# Safety culture in radiological departments

### Katrien Van Slambrouck, PhD

katrien.vanslambrouck@fanc.fgov.be

Health and Environment – Service Health Protection

Theme coordinator medical X-ray applications



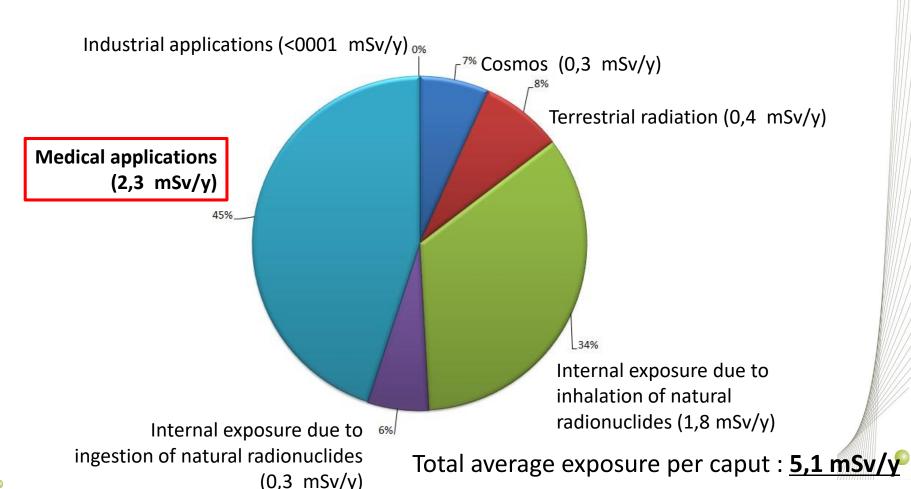
federaal agentschap voor nucleaire controle agence fédérale de contrôle nucléaire

www.fanc.fgov.be

- Safety culture
- Medical exposures
- Justification
- Optimization
- Dose limits
- Communication
- Incident management
- Audit
- Conclusion



**Dupont-Bradley curve** 


|        | Reactive         | Dependent      | Independent      | Interdependent |
|--------|------------------|----------------|------------------|----------------|
|        | Safety by        | Safety is      | Safety is        | Safety is      |
|        | instincts        | following      | knowledge of     | considered as  |
|        | ≻Limited         | imposed rules, | workers          | a professional |
| es     | commitment of    | procedures     | Individuals take | and            |
| Rates  | management       | Management     | responsibility   | organizational |
| 2      | Compliance is    | commitment     | Integration in   | pride          |
| Injury | the goal         | Training       | the customs      | Responsibility |
| -      | Responsibility   | Supervision    | "I can make a    | for themselves |
|        | → safety         | ➤ Discipline ↔ | difference"      | and the others |
|        | manager          | fear           |                  | Strive to      |
|        | ➤Incidents occur |                |                  | improve        |
|        | Reactive         | Dependent      | Independent      | Interdependent |

- Safety culture
- Medical exposures
- Justification
- Optimization
- Dose limits
- Communication
- Incident management
- Audit
- Conclusion



# Medical exposures

### Population exposure to ionizing radiation in Belgium





# Medical exposures

### Medical exposures are important

- More people exposed than from any other human activity
- Potentially high individual doses
- Increasing!

### Medical exposures are different

- Exposure of individuals (i.e. patients) is inherent (not a side-effect)
- No dose limits for patients

### Medical exposures are complex

- Greatest risk is often not ionizing radiation (e.g. trauma, disease)
- Patient ↔ staff and environment

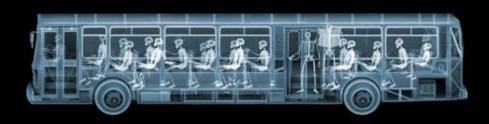


- Safety culture
- Medical exposures
- Justification
- Optimization
- Dose limits
- Communication
- Incident management
- Audit
- Conclusion

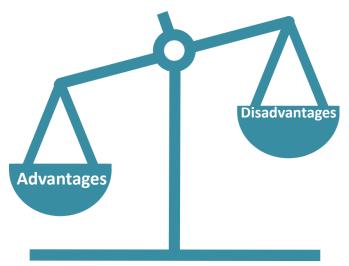


- Safety culture
- Medical exposures
- Justification
- Optimization
- Dose limits
- Communication
- Incident management
- Audit
- Conclusion

Base principles of radiation protection


3. DOSE LIMITATION

2. OPTIMIZATION


1. JUSTIFICATION



### A journey into justified medical exposures



#### **Medical examination**



Health, social and economical aspects w.r.t. patient, staff and environment

### "doing more good than harm"

#### Three levels of justification:

Level 1 Use of radiation in medicine

Level 2 Defined radiological procedures

Level 3 Procedure for an individual patient



#### Three levels of justification:

- Level 1 Justification of use of radiation in medicine
- Level 2 Justification of defined radiological procedures
- Level 3 Justification of a procedure for an individual patient

At the first and most general level, the use of radiation in medicine is accepted as doing more good than harm.

Its overall justification is taken for granted.



#### Three levels of justification:

- Level 1 Justification of use of radiation in medicine
- Level 2 Justification of defined radiological procedures
- Level 3 Justification of a procedure for an individual patient

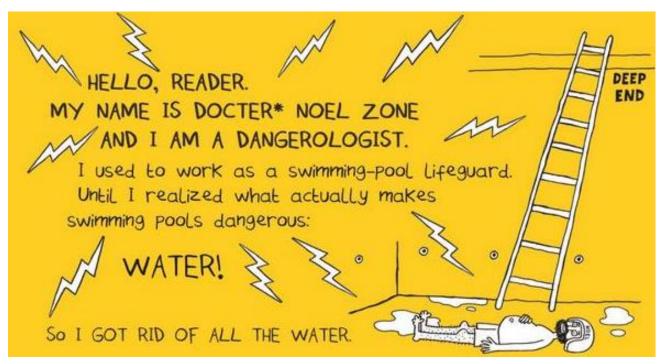
General justification of specific procedure, for specific objective

- Framework by (inter)national healthcare and radiological protection bodies and authorities → imaging/treatment guidelines based on symptoms, suggested diagnosis, ...
- Are there better alternatives available?
- Alternative that does not use ionizing radiation?
- Not only patients, also staff and public

→ Justification study for new acts (new type of procedures, equipment, products, ...) !!



#### Three levels of justification:


- Level 1 Justification of use of radiation in medicine
- Level 2 Justification of defined radiological procedures
- Level 3 Justification of a procedure for an individual patient

Specific objectives, specific characteristics of the patient

- Patient history/age/...
- Previous and future treatment
- Is the required information not yet available?
- Are there other examinations planned?
- Expected dose to the patient
- Benefit/risk analysis



### What makes justification sometimes difficult?



- Radiation risk is one of many risks
- Often forgotten because the exposure is usually inherent to the procedure
- Usually no directly visible effects



### What makes justification sometimes difficult?

- Frequency of radiological procedures has tremendously increased
- Lower dose examinations (Should we justify them? → yes!)
- "Go with the flow" & inertia towards changes
- Economical drivers & consumerist trends medical tourism
- Defensive medicine
- Easy access and self presentation
- Awareness of risks is too low
- Communication failure
   (between healthcare professionals and between healthcare professionals and public)

Linet et al., "Cancer risks associated with external radiation from diagnostic imaging procedures", CA Cander J Clin 2012; 62:75-100





### **Basis of justification = education**

- Awareness
- Installation of justification processes (adapted to the complexity of the medical procedures)
- Practitioner = expert of application
  - → final justification
  - based on input from referrer and other involved
  - MDs on the patient's history and current status



Staff should be knowledgeable!

Fast changing area: keep your knowledge up to date

- New techniques and equipment
- Options on the equipment
- Associated doses

Be aware of your local doses and typical doses for a certain procedure and the associated benefits and risks

- → needed in the justification process
- → needed to assess new techniques and evolutions



### Pregnancy





www.fanc.be > bevolking > Zwanger? Vermijd straling

www.fanc.be > population > Enceinte ? Evitez les rayons

Verify if your female patient could be pregnant!



### Children



Stralingsbelasting in de neonatologie in België

www.fanc.be > Predos

Dose de rayonnement en néonatologie
en Belgique

www.afcn.be > Predos



### Children

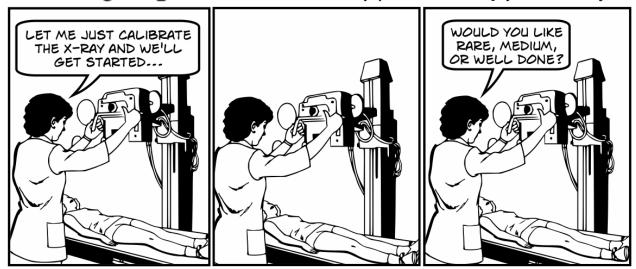




- Safety culture
- Medical exposures
- Justification
- Optimization
- Dose limits
- Communication
- Incident management
- Audit
- Conclusion

Base principles of radiation protection

3. DOSE LIMITATION


2. OPTIMIZATION

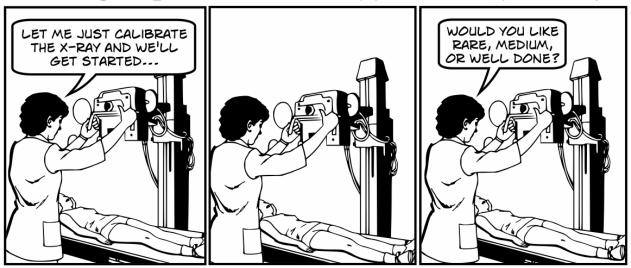
1. JUSTIFICATION



### Johnny Optimism

JohnnyOptimism.com / @2015 by Stilton Jarlsberg




### After justification!!

Aim = to provide images adequate for diagnosis or treatment while keeping the dose ALARA



### Johnny Optimism

JohnnyOptimism.com / @2015 by Stilton Jarlsberg



### After justification!!

#### Different areas:

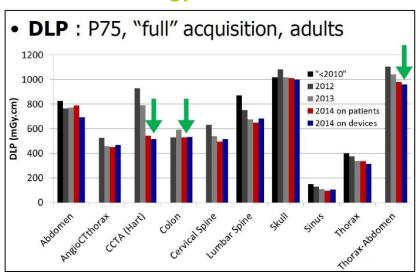
- Imaging procedure
- Equipment and devices
- Staff



### **Imaging procedure**

Produce the clinically required information



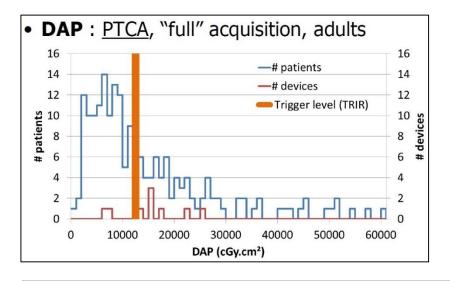

- Set up and use procedures
- Standard protocols and individual adjustment of scan parameters
- Consider dose reduction techniques
- Keep sufficient diagnostic quality (exam with lowest dose not necessarily the best!)
- Dose studies



### **FANC Decree Patient Dosimetry in Radiology**

- Individual dose/dose parameters
- Online measurements for interventional radiology
- National dose studies → Diagnostic references levels DRLs

#### Conventional radiology & CT




### Clear effort from most centers to optimize!

Progressive decrease for most examinations



# **FANC Dosimetry studies**



**Interventional radiology** 

Awareness, prevention and follow-up of deterministic effects!

#### HUIDDOSIS BIJ INTERVENTIONELE PROCEDURES

| TRIGGER NIVEAUS                                                                                 | DAP<br>(Dose-area product) |                     |         |
|-------------------------------------------------------------------------------------------------|----------------------------|---------------------|---------|
| TRIGGER NIVEAUS                                                                                 | cGy.cm²<br>μGy.m²          | mGy.cm <sup>2</sup> |         |
| TIPS & chemo embolisatie van de lever (TIPS : intrahepatische shunt via de vena transjugulaire) |                            | 33.000              | 330.000 |
| Cerebrale embolisaties                                                                          | monoplane                  | 17.500              | 175.000 |
| Cerebraie embolisaties                                                                          | biplane                    | 24.000              | 240.000 |
| RF ablatie                                                                                      |                            | 18.000              | 180.000 |
| BW-1 d-1                                                                                        | conventioneel              | 16.000              | 160.000 |
| Biliaire drainage                                                                               | PTC                        | 18.000              | 180.000 |
| Embolisatie vena spermatica                                                                     |                            | 27.000              | 270.000 |
| ERCP (endoscopsche retrograde cholangio-pancreatografie)                                        |                            | 29.500              | 295.000 |
| CA & PTCA<br>(coronaire angiografie & coronaire transluminale percutane)                        |                            | 12.500              | 125.000 |

MEER INFORMATIE

#### www.fanc.fgov.be of bij uw erkende stralingsfysicus

#### Hoe stralingsschade aan de huid voorkomen ?

- · Maximaliseer afstand tussen patiënt en
- Minimaliseer afstand tussen patiënt en beelddetector
- Minimaliseer de fluoroscopietijd en het aantal acquisitie beelden
- Varieer de ingangspositie van het stralingveld (varieer de bundelprojecties)
- Minimaliseer het gebruik van grote projectie-
- Gebruik een geschikte veldcollimatie
- Beperk vergrotingen tot een minimum
- Gebruik extra koperfiltratie
- Gebruik de beschikbare middelen voor dosis reductie (gepulste scopie, last image hold)

#### DOSE À LA PEAU LORS DE PROCÉDURES INTERVENTIONNELLES

| NIVEAUX DE DOSE D'ALERTE<br>(trigger levels)                                                |                                                               | DAP<br>(produit dose-surface) |         |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------|---------|
|                                                                                             |                                                               | cGy.cm²<br>µGy.m²             | mGy.cm² |
| TIPS & chimio embolisation du foie<br>(TIPS : shunt intrahépatique par voie transjugulaire) |                                                               | 33.000                        | 330.000 |
| Embolisation cérébrale                                                                      | en monoplan                                                   | 17.500                        | 175.000 |
| Embolisacion cerebrale                                                                      | en biplan                                                     | 24.000                        | 240.000 |
| Ablation par RF (radiofréquence)                                                            |                                                               | 18.000                        | 180.000 |
|                                                                                             | conventionnel                                                 | 16.000                        | 160.000 |
| Drainage biliaire                                                                           | Par PTC<br>(cholangiographie<br>transhépatique<br>percutanée) | 18.000                        | 180.000 |
| Embolisation de la veine spermatique                                                        |                                                               | 27.000                        | 270.000 |
| ERCP (cholangio-pancréatographie rétrograde endoscopique)                                   |                                                               | 29.500                        | 295.000 |
| CA & PTCA (angiographie coronaire & angioplastie coronaire transluminale                    |                                                               | 12.500                        | 125.000 |

PLUS D'INFORMATION

#### www.afcn.fgov.be

ou auprès de votre radiophysicien agréé

#### Comment prévenir les lésions cutanées dues aux ravonnements ionisants?

- Maximiser la distance patient / tube de rayon X
- Minimiser la distance patient / détecteur d'image
- Minimiser le temps de fluoroscopie et le nombre d'aquisitions
- Varier la position d'entrée du champ de rayonnement (varier la projection des faisceaux)
- Minimiser l'utilisation de projection grand angle
- Utiliser une collimation de champ adaptée
- Limiter l'agrandissement au minimum
- Utiliser un filtre de cuivre supplémentaire
- Utiliser les moyens disponibles pour réduire la dose (scopie pulsée, conservation de la dernière image)



FANC 6



Rue Ravenstein 36 | B-1000 Bruxelles

### **Imaging procedure**

- Optimization does not necessarily mean "pure" dose reduction
- Attention towards patient positioning, image/scan range, ...



what's wrong."



### **Equipment and devices**

- Before purchase: benefit-risk analysis including RP and QC/QA
- At installation
  - Possibilities and possible points of attention
  - Commissioning before first clinical usage
  - Take enough time for fine tuning
- Be aware of the (dose-reductions) possibilities of your equipment and use them when possible
- During use
  - QC: minimal acceptability criteria + constant follow-up (daily, weekly, monthly, ...)
  - Proper maintenance and calibration
  - QA



### **Equipment and devices**

Nicole Denjoy, COCIR Secretary General

"A quarter of the European CT installed base cannot be upgraded with the most important dose-saving technology advances, CT Dose Modulation and CT Reiterative reconstruction algorithm technologies. This is equivalent to approximately 2,500 units in Western Europe and 500 in Eastern Europe, which can now be considered inadequate from a radiation safety perspective."



COCIR
SUSTAINABLE COMPETENCE IN ADVANCING HEALTHCARE

EUROPEAN COORDINATION COMMITTEE OF THE RADIOLOGICAL, ELECTROMEDICAL AND HEALTHCARE IT INDUSTRY

Be aware of the possibilities and shortcomings of your equipment with respect to new evolutions and ideas and install a **replacement strategy** for your equipment



#### **Staff**

- Proper education and application specific training
- Awareness and attitude
  - Working techniques and procedures
  - QA-systems
  - Knowledge of dose and identification of low/high doses (imaging protocols and individual patient)
- Staff doses: ALARA
  - Protective measures and personal dosimeters (check your dose!)
  - Attention towards staff positioning/patient contact



### Optimization is team work

Define the relevant stakeholders practitioners, nurses, technologists/radiographers, medical physicists, manufactures, reception staff, ...

Iterative process of continuous evaluation and review



- Safety culture
- Medical exposures
- Justification
- Optimization
- Dose limits
- Communication
- Incident management
- Audit
- Conclusion

Base principles of radiation protection

3. DOSE LIMITATION

2. OPTIMIZATION

1. JUSTIFICATION



### Dose limitation

Dose limits for public and workers

**European Directive 2013/59/EURATOM** 

|  |                                                     |                 | Should b                          | implemented by 2018 |  |
|--|-----------------------------------------------------|-----------------|-----------------------------------|---------------------|--|
|  |                                                     | Public          | Exposed workers                   | (16-18y)            |  |
|  | Effective dose                                      | 1 mSv per year  | 20 mSv per 12 consecutive months  | 6 mSv per year      |  |
|  | Equivalent dose                                     |                 |                                   |                     |  |
|  | Eye lens                                            | 15 mSv per year | 20 mSv per 12 consecutive months  | 15 mSv per year     |  |
|  | Skin<br>(average dose for<br>each 1 cm²)            | 50 mSv per year | 500 mSv per 12 consecutive months | 150 mSv per year    |  |
|  | Hands, arms,<br>fore-arms, feet,<br>legs and ankles | NA              | 500 mSv per 12 consecutive months | 150 mSv per year    |  |



! DOSE LIMIT ≠ DOSE CREDIT!



- Safety culture
- Medical exposures
- Justification
- Optimization
- Dose limits
- Communication
- Incident management
- Audit
- Conclusion



### Patient communication

- Patients have the right to be informed<sup>1</sup>
- Extra attention for pregnant women and children
- Adequate information can only be given by knowledgeable persons
- Adapt your communication: patients have different background, capabilities:
  - Literacy (terminology, ...)
  - Numeracy (concept of percentages, ...)
  - Emotions, fear
  - What information does my patient want to know?



# gn

www.zuinign www.pasder

Accueil

Imagerie médicale

Home

Medische beeldvorming

Medische be geen vakant

# COMMUNICATING RADIATION RISKS IN PAEDIATRIC IMAGING

Information to support healthcare discussions about benefit and risk



stions et nses

Contact et liens



Contact en links

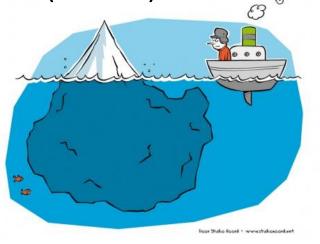






- Safety culture
- Medical exposures
- Justification
- Optimization
- Dose limits
- Communication
- Incident management
- Audit
- Conclusion

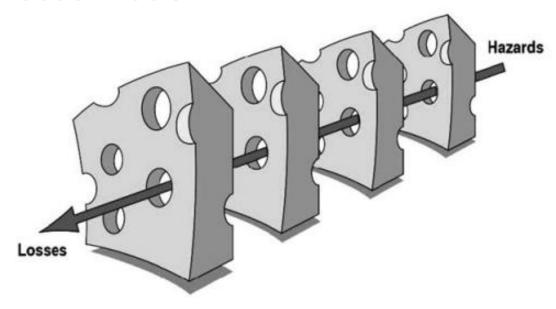



# Incident management

Incident = an event or circumstance which could have resulted, or did result, in unnecessary harm to a patient or a staff member

Incidents in the medical world → iceberg

Visible tip: effective harm for patient (or staff)


Submerged part: near-incidents





# Incident management

### Swiss cheese model



#### **Barriers**

- Technical
- Organizational
- Person-related (training, attitude, condition)



# Incident management

Nobody is perfect and no device is perfect BUT ..

Learn from (your) mistakes and avoid new mistakes!

→ Incident reporting system = more than registration software

- 1. Registration
- 2. Reporting & Analysis
- 3. Solution development
- 4. Implementation
- 5. Audit & monitoring
- 6. Feedback



### System should be:

- User-friendly
- Accessible
- Non-punitive



- Safety culture
- Medical exposures
- Justification
- Optimization
- Dose limits
- Communication
- Incident management
- Audit
- Conclusion



### **Audit**

#### What?

Clinical audit = a systematic assessment of clinical practice

### **Quality and safety improvement**

Improving not just checking where you are

- Patient care
- Justification (procedures and application)
- Optimization (procedures and application)
  - Patient dosimetry
  - Equipment
- Working procedures
- Incident management
- Education and training
- Staffing



### **Audit**

#### How?

Review of practices, procedures and results using standards for good practice

#### Peer review!

Audit can be supported by software tools but not replaced!

#### Who?

Multidisciplinary team (physicians, physicists, nurses, radiographers, ...)

#### **Modalities?**

Legal obligation (ARBIS/RGPRI) – organized by the medical colleges

Start-up for radiological departments



- Safety culture
- Medical exposures
- Justification
- Optimization
- Dose limits
- Communication
- Incident management
- Audit
- Conclusion



### Conclusion

### Safety culture is an organizational culture

- Awareness and implementation of justification
- Optimization attitude
- Incident reporting, analysis and follow-up
- Audit as a tool for review and improvement





# Take home questions

- What is the typical dose that your patients receive for a certain procedure?
- Are you aware of the related risks?
- How does this dose relate to typical doses for this procedure?
- What are the possible incidents that could happen in your department and what are the barriers put on to avoid them?
- Where could you still improve?

