lonising Radiation Detection & Measurement

S. Coenen November 30th 2018

Jonising Radiation Detection & Measurement

- Introduction
 - Matter ?
 - Interaction Radiation Matter
- Detector Types
 - Ionisation Chamber
 - Scintillation detectors
- Measurement of Radiation
- Dosimetry

Introduction

If it is Green or Wriggles, it is

Biology

If it Stinks, it isChemistry

If it makes a lot of noise, it is **Mechanics**

If it does not work, it is **Physics**

Detection of radiation?

Radiation cannot be detected directly !

• The consequences of the interaction between radiation and matter can be

detected

- Ionisation

Excitation

Matter = Atoms

Protons

- Found in the <u>nucleus</u> of atom
- positive (+) charge
- Mass Value ≈ 1

Neutrons

- found in <u>nucleus</u> of atom
- neutral (no) charge
- Mass value ≈ 1

Electrons

- found in <u>clouds</u>
 orbiting around
 nucleus
- negative (-) charge
- Mass value ≈ 0

- Dimensions
 - Atom: 60 to 270 E⁻¹² m
 - Nucleus: 2 to 15 E^{-15} m (\sim 20 000 times smaller than atom)

Typical Range of Radiation in Tissue

Source: Shapiro 1972.

Interaction of γ -Radiation with Matter

A. TRANSMITTED UNAFFECTED

No interaction

B. PHOTOELECTRIC ABSORPTION

Collision with a tightly bound inner-shell electron

C. RAYLEIGH SCATTERING

Elastic collision with a bound outer-shell electron

D. COMPTON SCATTERING

Inelastic collision with weakly bound outer-shell electron

Ionisation Chamber - Principle

- Gas-Filled Chamber
- 2 electrodes
- Ionisation of the gas (creation of charges)
- Behaviour of the Chamber depends on :
 - Composition of the gas
 - Gas pressure
 - Electric field across the electrodes
 - How the created charges are collected

Ionisaton Chamber – Electric Field

Scintillation Detector

- Based on excitation of electrons (Compton en photo-elektric effect)
- De-excitation of excited electron provides a pulse of light
- Pulse of light is amplified in a photomultiplier tube to provide an electric signal
- Signal is proportional with the energy of incoming photon, and hence can be used for spectrometry

Scintillator

NaI(TI) Scintillator

- Photon excites scintillation material
- De-excitation of electron to lower energy and emission of a light pluse
- Licht pulse captured on photocathode and produces 1 or more electrons
- Acceleration and multiplication of electrons by a series of dynodes to create an electric pluse that is captured on the anode

FAN

Detecting Radiation ≠ **Measuring Radiation**

- Detector Efficiency
 - Not all emitted radiation is detected: radiation needs to hit the detector
 - Not every particle or photon wil interact with the detector
 - Energy Dependancy
 - Energy compensated GM-tubes

$$\varepsilon_{abs} = \frac{\text{# detected events}}{\text{# emitted events}}$$

"Background"-Radiation

- Cosmic Radiation
- Other natural radiation sources
- Other nearby radioactive sources

- Detector Shielding
- Evaluate & Take into account background

Dose Rate in Belgium from Natural Radiation

From 60 to 130 nSv/h depending on the region

Other factors that can influence measurements

- Geometry between source and detector
- Nearby absorbing or reflecting materials
- R²-law
- Self Absorption of the source
- Reflecting material on the detector

Detecting Radiation ≠ **Measuring Radiation**

Dose Rate Measurements

Be Carefull with the Units !!!

mSv/h

• μSv/h

Some Examples & Demos

Questions?

